FEROZ AHMAD فيروز أحمد

Jan 2, 2024

17 stories

2 saves

Quantum Computing/Engineering

Table of Contents: 01) Constructor Theory 02) Hume, Russel vs Popper Philosophy 03) Universal Constructor 04) Counterfactuals 05) Constructor theory of Information 06) DeWitt’s Totalitarian property 07) Information Media 08) Principles of Information Media 09) Superinformation Media 10) Non-classicality within Superinformation 11) Hybrid Quantum Systems
Table of Contents: 01) The QMware Cloud Service 02) Introducing Basiq SDK 03) Understanding QUBO Problems 04) Variational Quantum Algorithms (VQAs) 05) The General QUBO Problem
Table of Contents: 01) Quantum Mechanics and Hilbert Space Reconsidered 02) Ising Model: Quantum Mechanics’ Non-Foundational Role 03) Harmonic Oscillator: Quantum-Classical Link 04) Neutrino Sheets: Unique Quantum Perspective 05) Automata Models: Quantum Insights 06) Cellular Automaton 07) Cellular Automaton Interpretation 08) Ontological Basis: Bridging Quantum and Classical
Table of Contents: 01) Discovery of Individual Quantum Systems 02) Trapped Ion Quantum Computing: An Overview 03) Ion Trapping and Manipulation 04) Microstructure Traps 05) Laser Cooling and Motional Control 06) Qubit Realization and State Detection 07) Coherent Control and Quantum Gates 08) Single Qubit Gates and Laser Manipulation 09) Addressing Challenges and Technical Complexity 10) Quantum Manipulation of Atomic Magnetic Moments 11) Precision Individual Ion Addressing 12) Momentum Impartation via Microwave Radiation 13) MAGIC 14) Robust Two-Qubit Gates with Dynamic Decoupling 15) Gate Resilience against Motional Excitation 16) Advancing Quantum Algorithms through Multi-Qubit Gates 17) Efficient Implementation of the Toffoli Gate 18) Economic Quantum Computing with Half Adders
Table of Contents: 01) Discovery of Individual Quantum Systems 02) Trapped Ion Quantum Computing: An Overview 03) Ion Trapping and Manipulation 04) Microstructure Traps 05) Laser Cooling and Motional Control 06) Qubit Realization and State Detection 07) Coherent Control and Quantum Gates 08) Single Qubit Gates and Laser Manipulation 09) Addressing Challenges and Technical Complexity 10) Quantum Manipulation of Atomic Magnetic Moments 11) Precision Individual Ion Addressing 12) Momentum Impartation via Microwave Radiation 13) MAGIC 14) Robust Two-Qubit Gates with Dynamic Decoupling 15) Gate Resilience against Motional Excitation 16) Advancing Quantum Algorithms through Multi-Qubit Gates 17) Efficient Implementation of the Toffoli Gate 18) Economic Quantum Computing with Half Adders
Table of Contents 01) Vortex Theory of Atoms 02) Nuanced Atomization through Vortex Rings 03) Peter Tait’s Knot Theory 04) Fundamentals of Knot Theory 05) The Significance of Knot Invariants 06) Exploration and Formulation of Kauffman Invariant 07) The Kauffman Invariant 08) Topological Equivalence 09) Complexities of Knot Invariants 10) Topological Quantum Field Theory 11) Topological Equivalence and Amplitudes in TQFT 12) Knot Invariants and Ed Witten’s Contributions 13) Proposed TQFT Computer 14) Flashback of Prehistory of Topological Quantum Computing 15) Topological Phases of Matter 16) Multiple Quasiparticles 17) Preparing Quasiparticle “Ket” and “Bra” States 18) Topological Phases of Matter Rules 19)Statistics and Non-Abelian Phenomena 20) Non-Abelian Statistics 21) Implications for Quantum Computation 22) Quantized Hall Effect 23) Exemplar Quantum Hall Sample 24) Fractional Quantum Hall Fluid 25) Topological Quantum Computation 26) Initialization and Measurement of States 27) Advantages
Table of Contents: 01) Quantum Computing Models 02) Quantum Computing Platforms 03) Photonic Quantum Computing — Two Approaches 04) Computation via Teleportation — The Fundamental Ingredient 05) The EPR State Generator: Squeezed Light Sources 06) Brief Overview of the Detection System: Homodyne Detector 07) Graphical Representation of EPR and Cluster States 08) Measurement-Based Quantum Computation 09) Cluster State Generation 10) 2D Cluster State Generation 11) Implementing Gates 12) Noise Addition and Error Correction 13) GKP Qubits 14) Bosonic Error Correction 15) Architecture and Fault-Tolerant Threshold 16) Challange: Generation of error-correctable state — GKP state 17) Pros of Photonic Quantum Computing
Table of Contents: 01) Electrons in Free Space 02) Electrons in Solids 03) Quantum Mechanics in Solids — Bloch’s Theory 04) Superconducting Materials 05) What are Quantum Materials? 06) Emergence 07) Spin Ice 08) Emergent Magnetic Monopoles 09) Experimental Confirmation of Monopoles 10) Magnetricity and Low Power Dissipation 11) Topological Electronic Materials 12) Skyrmions 13) Weyl Fermions 14) Weyl Semimetals 15) Magnetically induced Weyl semimetals
Table of Contents: 01) First two Decades of D-Wave 02) Phases of D-Wave Advancement 03) D-Wave’s Quantum Technology Milestones 04) D-Wave’s Advantage 05) D-Wave’s Hybrid Solvers: CQM and BQM 06) D-Wave’s Full Stack Quantum Computing Solution 07) D-Wave’s Three Verticals: Logistics, Pharma, and Finance 08) Quantum Annealing 09) Quantum Annealing-Different Perspective 10) Transverse Field Ising Hamiltonian 11) Quantum Annealing — Individual Qubit Level 12) RF SQUIDS 13) Tunable Qubit 14) Coupling Qubits 15) The Chip — Processor Layout 16) Quantum Annealing vs Gate-based Quantum Computing 17) Quantum Annealing vs QAOA
Table of Contents: 01) Introduction 02) Classical Silicon Nanoelectronics 03) Moore’s Law: Shrinking Transistors 04) From Bits to Qubits 05) Quantum Silicon Nanoelectronics 06) Challanges 07) Types of Silicon Spin Qubits 08) Current Status of Silicon Spin Qubits 09) Fabricating Quantum Dots 10) Fabricating donors in Silicon 11) Fabricate the Qubit 12) Control the spins 13) Readout the spins 14) Storing quantum information 15) Donor spin qubit coupling mechanisms 16) Coupling with a shared electron: Wavefunction sharing 17) Exchange-coupled donor electrons: 10nm — 20nm regime 18) Electric dipole-coupled flip-flop qubits 19) Scale-up inwards: Higher spin nuclei 20) Timed Implementation: Not scalable 21) Scale up outwards: Deterministic Implantation 22) Demonstrated Deterministic Implantation 23) Deterministically implanted donor qubits 24) Future hardware developments 25) Future Applications 26) Conclusion
Table of Contents: 01) Introduction 02) DiVincenzo Criteria for Superconducting Qubits 03) Harmonic Oscillators 04) Quantum Harmonic LC Oscillator 05) Superconducting Quantum Circuits 06) Nonlinear Superconducting Oscillators 07) Other types of Superconducting Qubits 08) Designing a Transmon Qubit 09) Tailoring Properties of a Transmon Qubit 10) Superconducting Qubit Readout 11) Implementing and Controlling Superconducting Qubits 12)Fabrication 13) Representing Qubits 14)Tunable Transmons 15) Finite Element Simulations 16) Single Qubit Gates 17) Two Qubit Gates 18) Control Hardware for Superconducting Quantum Computing 19) Control Software for Superconducting Quantum Computing 20) Conclusion
Table of contents: 01) Introduction 02) Practical Distribution of Useful Entanglement 03) Evolution of Quantum Communications 04) Qunnect’s Quantum Networking Products 05) Other Quantum Internet Companies 06) Challenges in Quantum Networking 07) Entanglement Distribution Networking 08) Next Steps: Entanglement Swapping & Teleportation 09) Conclusion
Table of Contents: 01) Introduction 02) 1. A scalable physical system with well characterized qubits 03) 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000⟩ 04) 3. Long “relevant” decoherence times, much longer than the gate operation time 05) 4. A “universal” set of quantum gates 06) 5. A qubit-specific measurement capability 07) Additional Conditions 08) Conclusion
Table of Contents: 01) Introduction 02) Qubits Encoded in Atoms in Optical Tweezers 03) Magneto-Optical Trap (MOT) 04) Interactions Using the Rydberg States 06) Properties of the Rydberg States 07) Components in Detail 08) Recent Progress 09) Conclusion
Table of Contents: 01) Introduction 02) Exploring Alkaline-Earth Atoms 03) Two Key Aspects 04) Error Correction in Quantum Computing 05) Error Threshold 06) Fault-Tolerant Thresholds in Quantum Circuits 07) Enhancing Thresholds through Structured Noise 08) Erasure Errors: Error Localization 09) Implementing Erasure Errors in Neutral Atom Qubits 10) Metastable Yb: A Novel Neutral Atom Qubit 11) Metastable Qubit Overview 12) Preparing and Measuring 3p0 State 13) Metastable State Lifetime and Coherence 14) Converting 3p0 Decays into Erasures 15) Rydberg Gates on Nuclear Spin 16) Benchmarking with Random Circuit and Interleaved Benchmarking 17) Future Improvements and Generalizability

FEROZ AHMAD فيروز أحمد

FEROZ AHMAD فيروز أحمد

Quantum Computing | Poetry | Philosophy | Deep Learning | Cosmology | Novel & Article Reviews | Essays | Science | Geopolitics | Economics